Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Cretaceous eolian deposits provide evidence of variations in the tropical-subtropical atmospheric circulation under greenhouse conditions. However, the misinterpretation of many such deposits as fluvial or deltaic originally hindered precise paleoclimatic reconstructions. Here we report a newly identified Early Cretaceous desert in the Hami Basin, China, which helps understand spatial-temporal variations in aridity and atmospheric circulations within central East Asia during the Early Cretaceous. The Liushuquan Formation is composed of >300-m-thick eolian deposits interpreted as an intermontane erg environment. Paleocurrent indicators within the straight-crested dunes of the Liushuquan Formation yield a mean trend of 101.3° (± 10.1°, 1 standard deviation) throughout the formation, consistent with near-surface westerly winds. Paleo-atmospheric circulation superimposed on topographic effects led to widespread eolianite accumulation during the Early Cretaceous. Combined with the spatiotemporal changes in desert distributions and prevailing surface wind patterns in East Asia, these observations are consistent with the migration of the subtropical high-pressure belt during the Early Cretaceous. We propose the following paleo-atmospheric model: (1) During the late Berriasian−Valanginian, the subtropical high belt drifted southward and northward over shorter time scales within the spatial domain of the paleo-Ordos Basin, then shifted southward at least past the Ordos Basin; (2) until the late Hauterivian−Barremian, the subtropical high-pressure zone was primarily located between the northwestern Tarim Basin and the Ordos Basin; and (3) a significant southward shift of the subtropical high-pressure zone occurred during the Aptian−Albian.more » « less
-
Free, publicly-accessible full text available December 1, 2025
-
Key Points Provenance changes at the outlet of the Hetao Basin indicate the desiccation and re‐integration of the upper Yellow River over the last ∼40 ka Paleo‐lake shorelines and geochemical proxies confirm that the west Hetao Basin contained the terminal lake for the desiccated Yellow River Climate‐river feedbacks across glacial‐interglacial cycles have implications for constraining terrestrial‐marine source‐to‐sink processesmore » « less
-
Key Points Geochemical evidence suggests that the Mongolian Plateau (MP) is the main source of dust for Lake Tuofengling (TFL) The East Asian Winter Monsoon (EAWM) is likely the dominant carrier of aeolian dust from the MP to TFL Dust flux and EAWM variability could be driven by a combination of changes in ice volume and Atlantic Ocean circulationmore » « less
-
Abstract Wind-blown dust from southern South America links the terrestrial, marine, atmospheric, and biological components of Earth’s climate system. The Pampas of central Argentina (~33°–39° S) contain a Miocene to Holocene aeolian record that spans an important interval of global cooling. Upper Miocene sediment provenance based onn = 3299 detrital-zircon U-Pb ages is consistent with the provenance of Pleistocene–Holocene deposits, indicating the Pampas are the site of a long-lived fluvial-aeolian system that has been operating since the late Miocene. Here, we show the establishment of aeolian sedimentation in the Pampas coincided with late Miocene cooling. These findings, combined with those from the Chinese Loess Plateau (~33°–39° N) underscore: (1) the role of fluvial transport in the development and maintenance of temporally persistent mid-latitude loess provinces; and (2) a global-climate forcing mechanism behind the establishment of large mid-latitude loess provinces during the late Miocene.more » « less
-
Abstract The Tafí del Valle depression (~27° S) in the eastern Andes of Argentina provides a record of late Pleistocene dust deposition in the subtropics of South America. We present large-nU-Pb geochronology data for detrital zircons from upper Pleistocene loess-paleosol deposits. When compared to regional data, the age spectra from the Tafí del Valle samples are most like the southern Puna Plateau, supporting derivation largely from the west and northwest. This runs counter to hypotheses suggesting these loessic sediments were derived from the low elevation plains to the east or extra-Andean Patagonia. Mapping of linear wind erosion features on the Puna Plateau yield a mean orientation of 125.7° (1 s.d. = 12.4°). These new data and existing records are consistent with a westerly-northwesterly dominated (upper- and lower-level) wind system over the southern Puna Plateau (to at least ~27° S) during periods of high dust accumulation in Tafí del Valle.more » « less
-
Abstract Quantifying variability in, and identifying the mechanisms behind, East Asian dust production and transport across the last several million years is essential for constraining future dust emissions and deposition. Our current understanding of East Asian dust dynamics through the Quaternary is primarily limited to low‐resolution records from the North Pacific Ocean, those from the Chinese Loess Plateau (CLP), and paleoenvironmental reconstructions from arid basins. All are susceptible to sediment winnowing and focusing as well as input of poorly constrained or unidentified non‐dust detrital material. To avoid these limitations, we examine high‐resolution, constant flux proxy‐derived dust fluxes from the North Pacific and find evidence for higher glacial dust fluxes in the late Pliocene‐early Pleistocene compared to the late Pleistocene‐Holocene. Our results suggest decreasing dust transported to the mid‐latitude North Pacific Ocean from eastern Asia across the Quaternary. This observation is ostensibly at odds with previous dust records from marine sediments and the CLP, and with the perception of higher East Asian dust production and transport during the late Pleistocene associated with the amplification of glaciations. We provide three possible scenarios to describe the ∼2,700‐ky evolution of eastern Asia glacial dust dynamics, and discuss them in the context of sediment production, availability, and atmospheric circulation. Our data and proposed driving mechanisms not only raise questions about the framework typically used to interpret dust archives from East Asia and the North Pacific Ocean, but also provide a roadmap for hypothesis testing and future work necessary to produce better‐constrained records of paleo‐dust fluxes.more » « less
An official website of the United States government
